Parametric inference for discretely observed multidimensional diffusions with small diffusion coefficient |
| |
Authors: | Romain Guy,Catherine Laré do,Elisabeta Vergu |
| |
Affiliation: | 1. UR 341 Mathématiques et Informatique Appliquées, INRA, Jouy-en-Josas, France;2. UMR 7599 Laboratoire de Probabilités et Modèles aléatoires, Université Denis Diderot Paris 7 and CNRS, Paris, France |
| |
Abstract: | We consider a multidimensional diffusion X with drift coefficient b(α,Xt) and diffusion coefficient ?σ(β,Xt). The diffusion sample path is discretely observed at times tk=kΔ for k=1…n on a fixed interval [0,T]. We study minimum contrast estimators derived from the Gaussian process approximating X for small ?. We obtain consistent and asymptotically normal estimators of α for fixed Δ and ?→0 and of (α,β) for Δ→0 and ?→0 without any condition linking ? and Δ. We compare the estimators obtained with various methods and for various magnitudes of Δ and ? based on simulation studies. Finally, we investigate the interest of using such methods in an epidemiological framework. |
| |
Keywords: | Minimum contrast estimators Low frequency data High frequency data Epidemic data |
本文献已被 ScienceDirect 等数据库收录! |
|