首页 | 本学科首页   官方微博 | 高级检索  
     


Parametric inference for discretely observed multidimensional diffusions with small diffusion coefficient
Authors:Romain Guy,Catherine Laré  do,Elisabeta Vergu
Affiliation:1. UR 341 Mathématiques et Informatique Appliquées, INRA, Jouy-en-Josas, France;2. UMR 7599 Laboratoire de Probabilités et Modèles aléatoires, Université Denis Diderot Paris 7 and CNRS, Paris, France
Abstract:We consider a multidimensional diffusion XX with drift coefficient b(α,Xt)b(α,Xt) and diffusion coefficient ?σ(β,Xt)?σ(β,Xt). The diffusion sample path is discretely observed at times tk=kΔtk=kΔ for k=1…nk=1n on a fixed interval [0,T][0,T]. We study minimum contrast estimators derived from the Gaussian process approximating XX for small ??. We obtain consistent and asymptotically normal estimators of αα for fixed ΔΔ and ?→0?0 and of (α,β)(α,β) for Δ→0Δ0 and ?→0?0 without any condition linking ?? and ΔΔ. We compare the estimators obtained with various methods and for various magnitudes of ΔΔ and ?? based on simulation studies. Finally, we investigate the interest of using such methods in an epidemiological framework.
Keywords:Minimum contrast estimators   Low frequency data   High frequency data   Epidemic data
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号