首页 | 本学科首页   官方微博 | 高级检索  
     检索      

利用分子动力学方法铁素体-渗碳体相界面效应探究
引用本文:王振宇.利用分子动力学方法铁素体-渗碳体相界面效应探究[J].原子与分子物理学报,2024,41(2):022005.
作者姓名:王振宇
作者单位:江苏联合职业技术学院靖江中专办学点
摘    要:珠光体是十分重要的组织结构,因此本文构建了含铁素体-渗碳体相界面的模型,并采用分子动力学模拟方法模拟纳米压入的过程。通过对模拟结果的力学性能和组织结构分析,探究了铁素体-渗碳体相界面效应。研究发现,距铁素体-渗碳体晶界不同距离(位置压入),在压入最初阶段,压头载荷随着压头与晶界距离的增大而增大,当压入深度达到一定深度后,载荷随着距离的增大而减小。杨氏模量和最大剪切模量受压头尖端下方原子结构的直接影响,硬度受到结构完整性和类型的共同影响。铁素体-渗碳体相界面影响了纳米压入过程中位错形核、增殖和扩展,宏观表现为在相同压入深度下,不同压入位置压头载荷的差异。

关 键 词:分子动力学  铁素体-渗碳体相界面  力学性能  微观组织
收稿时间:2022/7/23 0:00:00
修稿时间:2022/8/5 0:00:00

Research on the interface effect of ferrite-cementite phase by molecular dynamics
Wang Zhen-Yu.Research on the interface effect of ferrite-cementite phase by molecular dynamics[J].Journal of Atomic and Molecular Physics,2024,41(2):022005.
Authors:Wang Zhen-Yu
Abstract:Pearlite is a very important microstructure. Therefore, a model of the ferrite-cementite phase interface is constructed in this paper, and the process of nano-intrusion is simulated by molecular dynamics simulation method. By analyzing the mechanical properties and microstructure of the simulation results, the ferrite-cementite phase interface effect was explored. It is found that the indenter load increases with the increase of the distance between the indenter and the grain boundary at different distances (positions of indentation) from the ferrite-cementite grain boundary. When the indentation depth reaches a certain After depth, the load decreases with distance. Young''s modulus and maximum shear modulus are directly affected by the atomic structure below the indenter tip, and hardness is affected by both structural integrity and type. Ferrite- The cementite phase interface affects the nucleation, proliferation and expansion of dislocations during the nano-indentation process, and the macroscopic performance is the difference of the indenter load at different indentation positions under the same indentation depth.
Keywords:molecular dynamics  ferrite-cementite phase interface  mechanical properties  microstructure
点击此处可从《原子与分子物理学报》浏览原始摘要信息
点击此处可从《原子与分子物理学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号