首页 | 本学科首页   官方微博 | 高级检索  
     


Estimation and Bootstrap with Censored Data in Fixed Design Nonparametric Regression
Authors:Ingrid Van Keilegom  Noël Veraverbeke
Affiliation:(1) Department of Mathematics, Limburgs Universitair Centrum, Universitaire Campus, B-3590 Diepenbeek, Belgium
Abstract:We study Beran's extension of the Kaplan-Meier estimator for thesituation of right censored observations at fixed covariate values. Thisestimator for the conditional distribution function at a given value of thecovariate involves smoothing with Gasser-Müller weights. We establishan almost sure asymptotic representation which provides a key tool forobtaining central limit results. To avoid complicated estimation ofasymptotic bias and variance parameters, we propose a resampling methodwhich takes the covariate information into account. An asymptoticrepresentation for the bootstrapped estimator is proved and the strongconsistency of the bootstrap approximation to the conditional distributionfunction is obtained.
Keywords:Asymptotic normality  asymptotic representation  bootstrap approximation  fixed design  kernel estimator  nonparametric regression  right censoring
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号