首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Monostatic and bistatic statistical shadowing functions from a one-dimensional stationary randomly rough surface according to the observation length: I. Single scattering
Authors:C Bourlier  G Berginc  J Saillard
Abstract:When solving electromagnetic rough-surface scattering problems, the effect of shadowing by the surface roughness often needs to be considered, especially as the illumination angle approaches grazing incidence. This paper presents the Ricciardi-Sato, as well as the Wagner and the Smith formulations for calculating the monostatic and bistatic statistical shadowing functions from a one-dimensional rough stationary surface, which are valid for an uncorrelated Gaussian process with an infinite surface length. In this paper, these formulations are extended to include a finite surface length and any uncorrelated process. The inclusion of a finite surface length is needed to extend the single-reflection shadowing function to the more general multiple-reflection case, presented in the following companion paper. Comparisons of these shadowing functions with the exact numerical solution for the shadowing (using surfaces with Gaussian and Lorentzian autocorrelation functions for a Gaussian process) shows that the Smith formulation without correlation is a good approximation, and that including correlation only weakly improves the model. This paper also presents a method to include the shadowing effect in the electromagnetic scattering problem.
Keywords:
本文献已被 InformaWorld 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号