首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Measurements of the Protective Effect of Topically Applied Sunscreens using in vitro Three-dimensional Dermal and Skin Equivalents
Authors:Corinne Augustin  Christian Collombel  Odile Damour
Institution:Laboratoire des Substituts Cutanés, Hôpital Edouard Herriot, Lyon, France
Abstract:Abstract— For preventing or minimizing acute and chronic skin damage caused by UV radiation, the use of sunscreens is probably the most important measure. To screen the protective efficacy of new sunscreen molecules or formulations against UV rays, we evaluated as in vitro testing methods the use of two three-dimensional models, a dermal equivalent (DE) and a skin equivalent (SE). The DE is composed of a porous collagen-glycosaminoglycans-chitosan matrix populated by normal human fibroblasts. The SE is comprised of a fully differentiated epidermis realized by seeding keratinocytes onto the DE. In this study, we demonstrated that the DE and SE models react to the deleterious effects of UVA and UVB. Then, we extended our research to the evaluation of their usefulness for photoprotection trials. Sunscreen agents (Euso-lex 8020 and 6300) and commercially available sunscreens (chemical and physical filter formulations) that protect the skin against either UVA or UVB were evaluated. The tested products were applied (n = 6) topically (10 μL) and incubated for 30 min prior to irradiation over a range of UVA (0-50 J/cm2) or UVB (0-5 J/cm2). The photoprotection provided by the tested sunscreen molecules and formulations was evaluated by measurement of residual cellular viability 24 h postirradiation using the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetra-zolium bromide (MTT) test and assessment of the inflammation response by interleukin-la release assay. When sunscreens were applied prior to UV exposure, a higher residual cellular viability versus control was obtained, demonstrating the photoprotective effects of the tested products. These in vitro models could be used for screening tests to evaluate the protective effects of sunscreen molecules and formulations, especially for UVA trials because there is a lack of consensus for an in vivo method.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号