摘 要: | 为了实现快速检测果珍中的二氧化钛含量,提出了应用近红外光谱技术结合化学计量学的快速检测方法。研究采用了320份果珍样本进行光谱特性的检测,其中200个样本用来建模,120个样本进行预测。首先比较了标准正态变量校正(SNV)、变量标准化(Normalize)、多元散射校正(MSC)等6种不同的数据预处理方法对偏最小二乘法(PLS)建模预测效果的影响。然后将PLS模型与应用主成分(PC)建立的主成分-神经网络校正(PC-ANN)模型进行比较。结果表明,MSC预处理的效果最好,PLS模型的最佳主成分数为7,预测值与标准值的相关系数R2达0.900 8,预测标准误差RMSEP为0.05。PC-ANN模型预测值与标准值的R2为0.868 4,RMSEP为0.04。说明PLS模型比PC-ANN模型的预测效果好。同时本研究也说明能够应用可见/近红外技术对二氧化钛进行快速定量测定。
|