首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Feasibility of “intermittent” active control of combustion instabilities in liquid fueled combustors using a “smart” fuel injector
Authors:T Conrad  A Bibik  D Shcherbik  E Lubarsky  BT Zinn  
Institution:aAerospace Combustion Laboratory, Schools of Mechanical and Aerospace Engineering, Georgia Institute of Technology, Atlanta, GA 30332-0150, USA
Abstract:This paper describes an experimental investigation of the feasibility of an “intermittent” active control approach for suppressing combustion instabilities in liquid fueled combustors. The developed controller employs a “smart” fuel injector that can modify the spray properties in response to changes in combustor operating conditions. This action weakens or breaks up the coupling between the combustion process and combustor acoustic modes oscillations, thus preventing the excitation of large amplitude instabilities. This approach differs significantly from previously proposed active control methods, both in concept and implementation, as it requires only “intermittent” modification of the combustion process by a single control action as opposed to the continuous action required by most other active control methods. The “smart” fuel injector used in this study consisted of a double-staged, air-assisted atomizer in which counter swirling, primary (inner stage) and secondary (outer stage) air streams were supplied to the injector through separate sets of tangentially oriented orifices. Control of the ratio of air mass flow rates supplied to these two stages, by use of a diverter valve, resulted in significant changes in the spray shape and its axial, tangential, and radial velocity components. This variation in spray properties of the “smart” injector was characterized for different values of the inner to outer air flow rate ratio in cold flow tests with a PDPA system. These results were then correlated with the characteristics of the “intermittently” controlled combustor. Measured quantities included the instability amplitudes, axial dependence of the mean and oscillatory heat release amplitudes, and the characteristics of the recirculation zones, which were all shown to depend on the fuel spray properties. The results of this study demonstrate the feasibility of using “smart” fuel injectors with capabilities for varying the combustion process characteristics to reduce the amplitudes of detrimental combustion instabilities in real engines to acceptable levels.
Keywords:Active control  Combustion instabilities
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号