首页 | 本学科首页   官方微博 | 高级检索  
     检索      


A group invariant solution for a pre-existing fluid-driven fracture in permeable rock
Authors:AG Fareo  DP Mason
Institution:Centre for Differential Equations, Continuum Mechanics and Applications, School of Computational and Applied Mathematics, University of the Witwatersrand Johannesburg, Private Bag 3, Wits 2050, South Africa
Abstract:The propagation of a two-dimensional pre-existing fracture in permeable rock by the injection of a viscous, incompressible Newtonian fluid is considered. The fluid flow in the fracture is laminar. By the application of lubrication theory, a partial differential equation relating the half-width of the fracture to the fluid pressure and leak-off velocity is derived. The model is closed by the adoption of the PKN formulation in which the fluid pressure is proportional to the fracture half-width. The partial differential equation admits four Lie point symmetries provided the leak-off velocity satisfies a first order linear partial differential equation. The solution of this equation yields the leak-off velocity as a function of the distance along the fracture and time. The group invariant solution is derived by considering a linear combination of the Lie point symmetries. The boundary value problem is reformulated as a pair of initial value problems. The model in which the leak-off velocity is proportional to the fracture half-width is considered. The working condition of constant pressure at the fracture entry is analysed in detail.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号