首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Fluctuation states and optical spectra of solid solutions with a strong isoelectronic perturbation
Authors:A A Klochikhin  S A Permogorov  A N Reznitskii
Institution:(1) Institute of Nuclear Physics, Russian Academy of Sciences, 188350 Gatchina, St. Petersburg, Russia;(2) A. F. Ioffe Physicotechnical Institute, Russian Academy of Sciences, 194021 St. Petersburg, Russia
Abstract:We propose an approach to describing the density of fluctuation states in a disordered solid solution with a strong perturbation introduced by isoelectronic substitution in the range of attraction-center concentrations below the threshold of percolation along the sites of a disordered sublattice. To estimate the number of localized states we use the results of lattice percolation theory. We describe a method for distinguishing, within the continuum percolation theory, among the various “radiating” states of the fluctuation-induced tail, states that form the luminescence band at weak excitation. We also establish the position of the band of radiating states in relation to the absorption band of the excitonic ground state and the mobility edge of the system. The approach is used to describe the optical spectra of the solid solution ZnSe1−c Tec, which at low Te concentrations can be interpreted as a system with strong scattering. We take into account the exciton-phonon interaction and show that the calculated and observed luminescence spectra of localized excitons are in good agreement with each other. Zh. éksp. Teor. Fiz. 115, 1039–1062 (March 1999)
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号