Comparison between evaporative light scattering detection and charged aerosol detection for the analysis of saikosaponins |
| |
Authors: | Han Young Eom So-Young Park Min Kyung Kim Joon Hyuk Suh Hyesun Yeom Jung Won Min Unyong Kim Jeongmi Lee Jeong-Rok Youm Sang Beom Han |
| |
Affiliation: | 1. Department of Pharmaceutical Analysis, College of Pharmacy, Chung-Ang University, 221 Heukseok-Dong, Dongjak-Gu, Seoul 156-756, South Korea;2. Department of Nanobiomedical Science, College of Advanced Science, Dankook University, Cheonan, Chungnam 330-714, South Korea;3. College of Pharmacy, Sungkyunkwan University, 300 Cheoncheon-dong, Jangan-gu, Suwon, Gyeonggi 440-746, South Korea |
| |
Abstract: | Saikosaponins are triterpene saponins derived from the roots of Bupleurum falcatum L. (Umbelliferae), which has been traditionally used to treat fever, inflammation, liver diseases, and nephritis. It is difficult to analyze saikosaponins using HPLC-UV due to the lack of chromophores. Therefore, evaporative light scattering detection (ELSD) is used as a valuable alternative to UV detection. More recently, a charged aerosol detection (CAD) method has been developed to improve the sensitivity and reproducibility of ELSD. In this study, we compared CAD and ELSD methods in the simultaneous analysis of 10 saikosaponins, including saikosaponins-A, -B1, -B2, -B3, -B4, -C, -D, -G, -H and -I. A mixture of the 10 saikosaponins was injected into the Ascentis® Express C18 column (100 mm × 4.6 mm, 2.7 μm) with gradient elution and detection with CAD and ELSD by splitting. We examined various factors that could affect the sensitivity of the detectors including various concentrations of additives, pH and flow rate of the mobile phase, purity of nitrogen gas and the CAD range. The sensitivity was determined based on the signal-to-noise ratio. The best sensitivity for CAD was achieved with 0.1 mM ammonium acetate at pH 4.0 in the mobile phase with a flow rate of 1.0 mL/min, and the CAD range at 100 pA, whereas that for ELSD was achieved with 0.01% acetic acid in the mobile phase with a flow rate at 0.8 mL/min. The purity of the nitrogen gas had only minor effects on the sensitivities of both detectors. Finally, the sensitivity for CAD was two to six times better than that of ELSD. Taken together, these results suggest that CAD provides a more sensitive analysis of the 10 saikosaponins than does ELSD. |
| |
Keywords: | Charged aerosol detection (CAD) Evaporative light scattering detection (ELSD) Saikosaponins Bupleuri Radix |
本文献已被 ScienceDirect 等数据库收录! |
|