首页 | 本学科首页   官方微博 | 高级检索  
     

一种低原子序数元素EDX RF的多次导-样条小波解析方法研究
引用本文:吴廉晖,何剑锋,周世融,汪雪元,叶志翔. 一种低原子序数元素EDX RF的多次导-样条小波解析方法研究[J]. 光谱学与光谱分析, 2021, 41(8): 2530-2535. DOI: 10.3964/j.issn.1000-0593(2021)08-2530-06
作者姓名:吴廉晖  何剑锋  周世融  汪雪元  叶志翔
作者单位:东华理工大学放射性地质与勘探技术国防重点学科实验室,江西 南昌 330013;东华理工大学江西省放射性地学大数据技术工程实验室,江西 南昌 330013;东华理工大学信息工程学院,江西 南昌 330013;东华理工大学江西省放射性地学大数据技术工程实验室,江西 南昌 330013;东华理工大学信息工程学院,江西 南昌 330013;东华理工大学放射性地质与勘探技术国防重点学科实验室,江西 南昌 330013;东华理工大学江西省放射性地学大数据技术工程实验室,江西 南昌 330013
基金项目:国家自然科学基金项目(11865002),江西省教育厅科学技术研究项目(GJJ160556, GJJ170433),放射性地质与勘探技术国防重点学科实验室开放基金项目(RGET1609),江西省放射性地学大数据技术工程实验室开放基金项目(JELRGBDT201703)资助
摘    要:能量色散X射线荧光(EDXRF)光谱分析待测元素的信息主要反映在能谱的特征峰峰位以及特征峰净峰面积中.对于特征峰的准确检测是EDXRF光谱分析的关键.特征X射线之间的能量在低原子序数元素中相差很小,在实际测量过程中由其他一些因素干扰会导致EDXRF光谱中特征峰产生严重重叠,以EDXRF光谱中低序列元素的重叠峰作为研究对...

关 键 词:X射线荧光光谱  四次导数  三样条小波变换  低分离度重叠峰分解
收稿时间:2020-07-29

A Multi-Derivation-Spline Wavelet Analysis Method for Low Atomic Number Element EDXRF
WU Lian-hui,HE Jian-feng,ZHOU Shi-rong,WANG Xue-yuan,YE Zhi-xiang. A Multi-Derivation-Spline Wavelet Analysis Method for Low Atomic Number Element EDXRF[J]. Spectroscopy and Spectral Analysis, 2021, 41(8): 2530-2535. DOI: 10.3964/j.issn.1000-0593(2021)08-2530-06
Authors:WU Lian-hui  HE Jian-feng  ZHOU Shi-rong  WANG Xue-yuan  YE Zhi-xiang
Affiliation:1. Fundamental Science on Radioactive Geology and Exploration Technology Laboratory, East China University of Technology, Nanchang 330013, China2. Jiangxi Engineering Laboratory on Radioactive Geoscience and Big Data Technology, East China University of Technology, Nanchang 330013, China3. Information Engineering College, East China University of Technology, Nanchang 330013, China
Abstract:The information of elements to be measured in the energy dispersion X-ray fluorescence(EDXRF) spectrum is included in the characteristic peak position and the characteristic peak net peak area. Accurate detection of characteristic peaks is the key to energy dispersive X-ray fluorescence spectroscopy. The energy difference between the characteristic X-rays of many low sequence elements is very small, there are many kinds of interference in the process of fluorescence spectrum generation,resulting in serious overlapping peaks of measured X-ray fluorescence data, in this paper, overlapping peaks are taken as the research object,this paper presents a method to deal with overlapping peaks by combining the fourth derivative with the three-spline wavelet transform. The effectiveness of the method was tested by simulating overlapping peaks. The data of X-ray fluorescence spectrum and measured data are verified and analyzed. Firstly, the principle of the derivative method and three-spline wavelet method to decompose overlap is introduced in detail. The higher the derivative order, the more distorted the signal, but it can effectively improve the separation degree of the overlapping peak. The three-spline wavelet transform is weak for the to deal with peak with low separation degree, but it can effectively maintain the peak shape. By simulating the data. Among the three overlapping peaks, the separation degree of peak 1 and peak 2 is R=0.33. The separation degree of peak two and peak three R=0.67, after the fourth derivative there is some overlap in the signal, but the fourth derivative not only retains the peak position of the signal, and the degree of separation increases. Combined with the characteristics of the three-spline wavelet transform, by adjusting the value of the decomposition hierarchy, and reconstructed by scaling up the high frequency signal by a factor greater than 1, the simulated overlapping peaks are decomposed. The number of decomposition layers of the three-spline wavelet is four, and the amplification factor of high frequency is six times. Then, the overlapping spectrum of element K is simulated. The decomposition of overlapping peaks is realized. The simulation results show that the new method can accurately identify the peak position, and the error is within 1%. The applicability of the new method to X -ray fluorescence spectrum overlap peak decomposition is proved. It is verified that this method is feasible to decompose overlapping peaks. The last, is the Ca element X-ray fluorescence spectrum data and Mixed light element X-ray fluorescence spectrum data detected by the CIT-3000SY X-ray fluorescence element logging instrument were processed. Now the decomposition of the overlapping peaks and the peak position error after decomposition are controlled within 1%, with high accuracy. The experimental results show that: The fourth derivative combined with three-spline wavelet transform can effectively separate overlapping peaks. And it is practical to deal with the overlapping peak decomposition of X-ray fluorescence spectrum.
Keywords:X-ray fluorescence spectrum  Four times the derivative  Three spline wavelet  Low separation overlap peak decomposition  
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《光谱学与光谱分析》浏览原始摘要信息
点击此处可从《光谱学与光谱分析》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号