首页 | 本学科首页   官方微博 | 高级检索  
     检索      


On the definitions of failure and critical states in hypoplasticity
Authors:V A Osinov
Institution:(1) Institute of Geotechnical Engineering, University of Natural Resources and Applied Life Sciences, Feistmantelstr. 4, 1180 Vienna, Austria
Abstract:A granular body is said to be at failure or in a critical state if the stress state does not change while the body is continuously deformed. Within the framework of hypoplasticity, such states, generally called stationary states,are conventionally defined by the condition that an objective (the Jaumann) stress rate vanishes. However, not all stationary states attained under monotonic deformation lie within the scope of this definition. Simple shear is an example. In fact, stationary states are characterized by zero material time derivative of the stress tensor rather than zero Jaumann rate. In the present paper, we give a generalized definition of stationarity by the condition of zero material time derivative of the stress tensor. The new definition extends the set of possible stationary states and includes those which are not covered by the previous definition. Stationary states are analysed quantitatively using calibrated hypoplastic equations. It is shown numerically that, if the norm of the spin tensor is of the same order as, or smaller than, the norm of the stretching tensor, the old definition approximates all possible sationary states with sufficient accuracy.
Keywords:Failure  Critical state  Granular material  Hypoplasticity
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号