首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Anion-exchange separation and determination of bisphosphonates and related analytes by post-column indirect fluorescence detection
Authors:Michael J Lovdahl  Donald J Pietrzyk  
Institution:

a Parke-Davis Pharmaceuticals, 2800 Plymouth Road, Ann Arbor, MI 48105, USA

b Department of Chemistry, University of Iowa, Iowa City, IA 52242, USA

Abstract:Bisphosphonic acids and their salts can be detected after their liquid chromatographic separation by post-column indirect fluorescence detection (IFD). After separation the analyte is combined with the highly fluorescent Al3+–morin (2′,3,4′,5,7-pentahydroxyflavone) solution and fluorescence decreases because of the formation of the nonfluorescent Al3+–bisphosphonate complex. The decrease in fluorescence is proportional to the amount of bisphosphonate present. Separation of the multivalent anionic bisphosphonate analytes from other anions and sample matrix is achieved on a strong base anion-exchange column with a strong, basic eluent. The post-column reaction variables, which influence IFD, are identified and optimized for the detection of the bisphosphonates after separation on the anion exchanger. The method is selective, since only a few anions will undergo a reaction with the Al3+–morin solution, and sensitive, detection limit for difluoromethylene bisphosphonate, F2MDP, is 4 ng for S/N=3. The separation–IFD method can be applied to the determination of bisphosphonates, such as F2MDP, ethane-1-hydroxy-1,1-bisphosphonic acid, dichloromethylene bisphosphonic acid, 4-amino-1-hydroxybutane-1,1-bisphosphonic acid, in biological samples. The separation–IFD method is also applicable to the detection of inositol phosphate anions.
Keywords:Bisphosphonates  Phosphonates  Inositol phosphate
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号