首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Thermo-mechanical modelling of cellular hybrid refractories
Authors:Anne Jung  Stefan Diebels
Institution:Universität des Saarlandes, Lehrstuhl für Technische Mechanik, Campus A4.2, D-66123 Saarbrücken
Abstract:Refractory materials are subjected to both quasi-static and dynamic thermal loading (thermal shock) causing damage up to mechanical failure. Typical refractories are magnesia carbon bricks consisting of periclase (MgO) and carbon inclusions. Recently, a significant improvement of the thermo-mechanical behaviour could be achieved by cellular hybrid composites made of periclase-filled carbon foams. The present contribution focuses on MgO-filled carbon foams and the investigation and optimisation of the structure-property relationship with respect to a reduction of thermally induced stresses and damage. It is a transient as well as static, fully coupled thermo-mechanical problem. According to the fact that, in general, refractories are brittle materials a linear elastic model, with a damage criterion was used. To optimise the structural morphology of the cellular refractories, the effect of micro structural changes has been determined. For the investigation of the thermal shock! behaviour, the results correlate very well with the experimentally motivated Hasselman relation. There is a significant size effect depending on the pore size. (© 2014 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号