首页 | 本学科首页   官方微博 | 高级检索  
     

冬小麦冻害胁迫高光谱分析与冻害严重度反演
引用本文:王慧芳,王纪华,董莹莹,顾晓鹤,霍治国. 冬小麦冻害胁迫高光谱分析与冻害严重度反演[J]. 光谱学与光谱分析, 2014, 34(5): 1357-1361. DOI: 10.3964/j.issn.1000-0593(2014)05-1357-05
作者姓名:王慧芳  王纪华  董莹莹  顾晓鹤  霍治国
作者单位:1. 中国气象科学研究院,北京 100081
2. 北京农业信息技术研究中心,北京市农林科学院,北京 100097
基金项目:国家自然科学基金项目(41001199)和国家科技支撑计划项目(2012BAD20B00), 国家高分辨率对地观测重大专项(民用部分)(03-Y30B06-9001-13/15)资助
摘    要:
对冬小麦冻害严重度的精确反演是及时采取补救措施降低损失的关键,同时及时预测产量损失对政府职能部门也具有积极意义。针对冬小麦冻害群体严重度评估方法在经典统计反演模型存在估算效果不理想的情况下,以冬小麦为试验对象,首先对冬小麦冠层光谱反射率数据进行重采样平滑处理,再用主成分分析(PCA)技术对高光谱数据进行分析,进一步实现综合原始光谱主成分信息作为自变量参与冬小麦冻害严重度反演过程,最后采用决定系数R2、均方根误差RMSE、准确度Accuracy三种模型精度验证方法对模型进行评价。结果显示,基于主成分分析法建立冬小麦冻害严重度模型精度分别达0.697 5,0.184 2和0.697 5;同时对反演模型进行验证,其精度也分别达到0.630 9,0.350 3和1.339 6。因此,该方法能有效地对冬小麦冻害严重度进行快速、精确的反演。

关 键 词:冬小麦冻害  高光谱  主成分分析(PCA)   
收稿时间:2013-07-17

Monitoring Freeze Stress Levels on Winter Wheat from Hyperspectral Reflectance Data Using Principal Component Analysis
WANG Hui-fang;WANG Ji-hua;DONG Ying-ying;GU Xiao-he;HUO Zhi-guo. Monitoring Freeze Stress Levels on Winter Wheat from Hyperspectral Reflectance Data Using Principal Component Analysis[J]. Spectroscopy and Spectral Analysis, 2014, 34(5): 1357-1361. DOI: 10.3964/j.issn.1000-0593(2014)05-1357-05
Authors:WANG Hui-fang  WANG Ji-hua  DONG Ying-ying  GU Xiao-he  HUO Zhi-guo
Affiliation:1. Chinese Academy of Meteorological Science, Beijing 100081, China2. Beijing Research Centre for Information Technology in Agriculture, Beijing 100097, China
Abstract:
In order to detect the freeze injury stress level of winter wheat growing in natural environment fast and accurately, the present paper takes winter wheat as experimental object. First winter wheat canopy hyperspectral data were treated with resampling smooth. Second hyperspectral data were analyzed based on principal components analysis (PCA), a freeze injury inversion model was established, stems survival rate was dependent, and principal components of spectral data were chosen as independent variables. Third, the precision of the model was testified. The result showed that the freeze injury inversion model based on 6 principal components can estimate the winter wheat freeze injury accurately with the coefficient of determination (R2) of 0.697 5, root mean square error (RMSE) of 0.184 2, and the accuracy of 0.697 5. And the model was verified. It can be concluded that the PCA technology has been shown to be very promising in detecting winter wheat freeze injury effectively, and provide important reference for detecting other stress on crop.
Keywords:Winter wheat freeze injury stress  Hyperspectral, Principal component analysis (PCA)
本文献已被 CNKI 等数据库收录!
点击此处可从《光谱学与光谱分析》浏览原始摘要信息
点击此处可从《光谱学与光谱分析》下载全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号