首页 | 本学科首页   官方微博 | 高级检索  
     


Biosourced Poly(lactic acid)/polyamide-11 Blends: Effect of an Elastomer on the Morphology and Mechanical Properties
Authors:Ali Fazli  Denis Rodrigue
Affiliation:Department of Chemical Engineering, Laval University, Quebec, QC G1V 0A6, Canada
Abstract:
Fully biobased polylactide (PLA)/polyamide-11 (PA11) blends were prepared by melt mixing with an elastomer intermediate phase to address the low elasticity and brittleness of PLA blends. The incorporation of a biobased elastomer made of poly(butylene adipate-co-terephthalate) (PBAT) and polyethylene oxide (PEO) copolymers was found to change the rigid interface between PLA and PA11 into a much more elastic/deformable one as well as promote interfacial compatibility. The interfacial tension of the polymer pairs and spreading coefficients revealed a high tendency of PEO to spread at the PLA/PA11 interface, resulting in a complete wetting regime (interfacial tension of 0.56 mN/m). A fully percolated rubbery phase (PEO) layer at the PLA/PA11 interface with enhanced interfacial interactions and PLA chain mobility contributed to a better distribution of the stress around the dispersed phase, leading to shear yielding of the matrix. The results also show that both the morphological modification and improved compatibility upon PEO addition (up to 20 wt %) contributed to the improved elongation at break (up to 104%) and impact strength (up to 292%) of the ternary PLA/PA11/PEO blends to obtain a super-tough multiphase system.
Keywords:biobased blends   poly(lactic acid)   polyamide-11   morphology   interfacial tension   impact strength
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号