Photocatalytic Degradation of Dyes Using Titania Nanoparticles Supported in Metal-Organic Materials Based on Iron |
| |
Authors: | Elizabeth Rojas-Garcí a,Diana Carolina Garcí a-Martí nez,Ricardo Ló pez-Medina,Fernando Rubio-Marcos,Aldo A. Castañ eda-Ramí rez,Ana M. Maubert-Franco |
| |
Abstract: | Composite materials based on titania nanoparticles (TiO2 NPs) and three metal-organic frameworks (MOFs) called MIL-53 (Fe) ((Fe (III) (OH) (1,4-BDC)), MILs (Materials Institute Lavoisier)), MIL-100 (Fe) (Fe3O(H2O)2OH(BTC)2), and Fe-BTC (iron-benzenetricarboxylate) with different percentages of TiO2 NPs (0.5, 1, and 2.5% wt.) were synthesized using the solvothermal method and used as photocatalytic materials in the degradation of two dyes (Orange II and Reactive Black 5 (RB5)). The pristine and composite materials were characterized with X-ray diffraction, Raman, UV–Vis and Fourier transform infrared spectroscopy and scanning electron microscopy techniques. The 2.5TiO2/MIL-100 composite material showed the best results for the degradation of both dyes (Reactive Black 5 and Orange II dye, 99% and 99.5% degradation in 105 and 150 min, respectively). The incorporation of TiO2 NPs into MOFs can decrease the recombination of the change carrier in the MOF, increasing the photocatalytic activity of a pristine MOF. Results therefore indicated that the synthesized MOF nanocomposites have good potential for wastewater treatment. |
| |
Keywords: | MIL-100 (Fe) TiO2/MIL-100 composite material Orange II Reactive Black 5 dye photocatalytic degradation MOFs |
|
|