首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Quantification of optison bubble size and lifetime during sonication dominant role of secondary cavitation bubbles causing acoustic bioeffects
Authors:Kamaev Pavel P  Hutcheson Joshua D  Wilson Michelle L  Prausnitz Mark R
Institution:School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, 311 Ferst Drive, Atlanta, Georgia 30332-0100, USA.
Abstract:Acoustic cavitation has been shown to deliver molecules into viable cells, which is of interest for drug and gene delivery applications. To address mechanisms of these acoustic bioeffects, this work measured the lifetime of albumin-stabilized cavitation bubbles (Optison) and correlated it with desirable (intracellular uptake of molecules) and undesirable (loss of cell viability) bioeffects. Optison was exposed to 500 kHz ultrasound (acoustic pressures of 0.6-3.0 MPa and energy exposures of 0.2-200 J/cm2) either with or without the presence of DU145 prostate cancer cells (10(6) cells/ml) bathed in calcein, a cell-impermeant tracer molecule. Bubble lifetime was determined using a Coulter counter and flow cytometer, while bioeffects were evaluated by flow cytometry. The lifetime of Optison cavitation nuclei was found to decrease and bioeffects (molecular uptake and loss of cell viability) were found to increase with increasing acoustic energy exposure. These bioeffects correlated well with the disappearance of bubbles, suggesting that contrast agent destruction either directly or indirectly affected cells, probably involving unstabilized cavitation nuclei created upon the destruction of Optison. Because Optison solutions presonicated to destroy all detectable bubbles also caused significant bioeffects, the indirect mechanism involving secondary cavitation bubbles is more likely.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号