首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Nuclear spin relaxation in paramagnetic systems (S>/=1) under fast rotation conditions
Authors:Kruk Danuta  Kowalewski Jozef
Institution:Division of Physical Chemistry, Arrhenius Laboratory, Stockholm University, S-106 91 Stockholm, Sweden.
Abstract:A new theoretical model for nuclear spin relaxation in paramagnetic systems in solution has been developed. Fast rotational motion is included in the model, both as a source of modulation of the static zero-field splitting, which provides a mechanism for electron spin relaxation, and as an origin of the stochastic variation of the electron spin-nuclear spin dipole-dipole interaction leading to nuclear spin relaxation. At the limit of low magnetic field, the model is essentially identical to the earlier formulations from our laboratory, but new closed-form expressions are given for the inner- and outer-sphere relaxation at the high-field limit. Numerical comparisons with a general theory are reported for the inner-sphere case. In addition, some nuclear magnetic relaxation dispersion (NMRD) profiles from the literature are considered for systems where experiments have been done with both low-molecular weight paramagnetic complexes and their adducts with proteins. Previously developed theories are used to interpret data for the slowly rotating protein adducts, and good fits of the fast-rotating counterparts are obtained by further adjustment of one or two additional parameters.
Keywords:
本文献已被 ScienceDirect PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号