首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Conformational analysis. Part 40: a theoretical and NMR investigation of the conformations of cis‐ and trans‐cyclopentane‐1,3‐diol
Abstract:The conformations of cis‐ ( 1 ) and trans‐cyclopentane‐1,3‐diol ( 2 ) have been studied by ab initio (Gaussian 98) and molecular mechanics (PCMODEL) calculations and by NMR spectroscopy. The calculations gave two low‐energy conformations for ( 1 ), 1A and 1B , both with axial hydroxyl groups. Two conformations with equatorial hydroxyl groups ( 1C and 1D ) were found but with much higher energy (ca 4.0 kcal mol?1). Five low‐energy conformers were found for 2 . Four were envelope conformations and one a half‐chair. The complete analysis of the 400 MHz 1H NMR spectra of 1 in a variety of solvents and 2 in chloroform was performed by extensive decoupling experiments, iterative computer analysis and spectral simulation. This gave all the H,H couplings in the molecule, including in 1 a long‐range 4J(H,H) coupling between H‐2cis and H‐4,5cis. The 3J(H,H) couplings were used to determine the conformer populations in these molecules. This was initially achieved using the Haasnoot, de Leeuw and Altona equation. to obtain the conformer couplings. It was found that this equation was not accurate for the C·CH2·CH2·C fragment in these molecules and the following equation was derived for this fragment from five‐ and six‐ membered cyclic compounds in fixed conformations: equation image (1) The conformer populations were obtained by calculating the conformer couplings which were then compared with the observed couplings. Compound 1 in benzene solution is an approximately equal mixture of conformers 1A and 1B with small (<4%) amounts of 1C and 1D . In the polar solvents acetone and acetonitrile the populations of 1A and 1B are again equal, with 20% of 1C and <2% of 1D . In 2 the major conformers are 2B and 2D with small amounts of 2C , 2E and 2A . These novel findings are considered with previous data on cyclopentanol and cis‐ and trans‐cyclopentane‐1,2‐diol and it is shown that the axial hydroxyl substituent at the fold of the envelope appears to be a major factor in determining the conformational energies of these compounds. Copyright © 2003 John Wiley & Sons, Ltd.
Keywords:NMR  1H NMR  cyclopentane‐1  3‐diols  H  H couplings  conformation
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号