Abstract: | We analyze the saturation mechanism of a vacuum resonance microwave discharge (multipactor) where the decelerating electrostatic field returns electrons to the secondary-emission multiplying surface. It is found that the Coulomb defocusing of electron bunches prevails over their microwave focusing (toward the resonance phase of the field) in the stationary state, making it possible to extract superfluous secondary electrons when the electron bunches are reproduced on the discharge surface. Using this model, we determine the main characteristics of this multipactor, such as the magnitude and phase disposition of the resonant electron bunch. An explanation of the increase in the discharge power with increase in the secondary-emission coefficient is given. Institute of Applied Physics of the Russian Academy of Sciences, Nizhny Novgorod, Russia. Translated from Izvestiya Vysshikh Uchebnykh Zavedenii, Radiofizika, Vol. 42, No. 11, pp. 1097–1104, November, 1999. |