Abstract: | One-dimensional nanowires with robust magnetism are desirable for spintronic applications. Herein, on the basis of the first-principles calculations, systematic investigations on the electronic and magnetic properties of the CuCl2 nanowire were performed, which can be potentially tailored from its bulk form. The CuCl2 nanowire exhibits a ferromagnetic ground state. The band structures indicate that the CuCl2 nanowire is a ferromagnetic semiconductor. The spin flip gap is large enough for avoiding spin flip. Phonon dispersion and Born-Oppenheimer molecular dynamics simulation manifest that the CuCl2 nanowire is stable. In addition, distinct magnetic properties of the CuCl2 nanowires inside two types of carbon nanotubes were obtained. The study broadens the family of the existing one-dimensional materials with promising applications for spintronics. |