首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Syntheses, characterization, and dioxygen reactivities of Cu(I) complexes with cis,cis-1,3,5-triaminocyclohexane derivatives: a Cu(III)2O2 intermediate exhibiting higher C-H activation
Authors:Kajita Yuji  Arii Hidekazu  Saito Takahiro  Saito Yamato  Nagatomo Shigenori  Kitagawa Teizo  Funahashi Yasuhiro  Ozawa Tomohiro  Masuda Hideki
Institution:Graduate School of Engineering, Nagoya Institute of Technology, Showa-ku, Nagoya 466-8555, Japan.
Abstract:Six Cu(I) complexes with cis,cis-1,3,5-triaminocyclohexane derivatives (R3CY, R = Et, iBu, and Bn), Cu(MeCN)(Et3CY)]SbF6 (1), Cu(MeCN)(iBu3CY)]SbF6 (2), Cu(MeCN)(Bn3CY)]SbF6 (3), Cu(CO)(Et3CY)]SbF6 (4), Cu(CO)(iBu3CY)]SbF6 (5), and Cu(CO)(Bn3CY)]SbF6 (6), were prepared to probe the ability of copper complexes to effectively catalyze oxygenation reactions. The complexes were characterized by elemental analysis, electrochemical and X-ray structure analyses, electronic absorption spectroscopy, IR spectroscopy, 1H NMR spectroscopy, and ESI mass spectrometry. The crystal structures of 1-3 and 6 and the CO stretching vibrations (nuCO) of 4-6 demonstrate that the ability of R3CY to donate electron density to the Cu(I) atom is stronger than that of the previously reported ligands, 1,4,7-triazacyclononane (R3TACN) and 1,4,7-triazacyclodecane (R3TACD). Reactions of complexes 1-3 with dioxygen in THF or CH2Cl2 at -105 to -80 degrees C yield bis(mu-oxo)dicopper(III) complexes 7-9 as intermediates as confirmed by electronic absorption spectroscopy and resonance Raman spectroscopy. The Cu-O stretching vibrations, nu(Cu-O) for 7 (16O2: 553, 581 cm-1and 18O2: 547 cm-1) and 8 (16O2: 571 cm-1 and 18O2: 544 cm-1), are observed in a lower energy region than previously reported for bis(micro-oxo) complexes. The decomposition rates of complexes 7-9 in THF at -90 degrees C are 2.78 x 10-4 for 7, 8.04 x 10-4 for 8, and 3.80 x 10-4 s-1 for 9. The decomposition rates of 7 and 8 in CH2Cl2 were 5.62 x 10-4 and 1.62 x 10-3 s-1, respectively, and the thermal stabilities of 7-9 in CH2Cl2 are lower than the values measured for the complexes in THF. The decomposition reactions obeyed first-order kinetics, and the H/D isotope experiments for 8 and 9 indicate that the N-dealkylation reaction is the rate-determining step in the decomposition processes. On the other hand, the decomposition reaction of 7 in THF results in the oxidation of THF (acting as an exogenous substrate) to give 2-hydroxy tetrahydrofuran and gamma-butyrolactone as oxidation products. Detailed investigation of the N-dealkylation reaction for 8 by kinetic experiments using N-H/D at -90 degrees C showed a kinetic isotope effect of 1.25, indicating that a weak electrostatic interaction between the N-H hydrogen and mu-oxo oxygen contributes to the major effect on the rate-determining step of N-dealkylation. X-ray crystal structures of the bis(micro-hydroxo)dicopper(II) complexes, Cu2(OH)2(Et3CY)2](CF3SO3)2 (10), Cu2(OH)2(iBu3CY)2](CF3SO3)2 (11), and Cu2(OH)2(Bn3CY)2](ClO4)2 (12), which have independently been prepared as the final products of bis(micro-oxo)dicopper(III) intermediates, suggest that an effective interaction between N-H and mu-oxo in the Cu(III)2(micro-O)2 core may enhance the oxidation ability of the metal-oxo species.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号