首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Cu(II) in liquid ammonia: an approach by hybrid quantum-mechanical/molecular-mechanical molecular dynamics simulation.
Authors:Christian F Schwenk  Bernd M Rode
Institution:Institute of General, Inorganic and Theoretical Chemistry, University of Innsbruck, Innrain 52a, 6020 Innsbruck, Austria.
Abstract:To investigate the solvation structure of the Cu(II) ion in liquid ammonia, ab initio quantum-mechanical/molecular-mechanical (QM/MM) molecular dynamics (MD) simulations were carried out at Hartree Fock (HF) and hybrid density functional theory (B3 LYP) levels. A sixfold-coordinated species was found to be predominant in the HF case whereas five- and sixfold-coordinated complexes were obtained in a ratio 2:1 from the B3 LYP simulation. In contrast to hydrated Cu(II), which exhibits a typical Jahn-Teller distortion, the geometrical arrangement of ligand molecules in the case of ammonia can be described as a 2 + 4] (2 + 3]) configuration with 4 (3) elongated copper-nitrogen bonds. First shell solvent exchange reactions at picosecond rate took place in both HF and B3 LYP simulations, again in contrast to the more stable sixfold-coordinated hydrate. NH3 ligands apparently lead to strongly accelerated dynamics of the Cu(II) solvate due to the "inverse" 2 + 4] structure with its larger number of elongated copper-ligand bonds. Several dynamical properties, such as mean ligand residence times or ion-ligand stretching frequencies, prove the high lability of the solvated complex.
Keywords:ab initio calculations  copper  Jahn‐Teller distortion  molecular dynamics  solvation structures
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号