Efficient estimation in conditional single-index regression |
| |
Authors: | Michel Delecroix |
| |
Affiliation: | a ENSAI and CREST, Rue Blaise Pascal, Campus de Ker Lann 35170 Bruz, France b Institut für Statistik und Ökonometrie, Humboldt-Universität zu Berlin, Spandauer Str. 1, D-10178 Berlin, Germany |
| |
Abstract: | Semiparametric single-index regression involves an unknown finite-dimensional parameter and an unknown (link) function. We consider estimation of the parameter via the pseudo-maximum likelihood method. For this purpose we estimate the conditional density of the response given a candidate index and maximize the obtained likelihood. We show that this technique of adaptation yields an asymptotically efficient estimator: it has minimal variance among all estimators. |
| |
Keywords: | primary 62G05 secondary 62G20, 62G07, 62G08 |
本文献已被 ScienceDirect 等数据库收录! |
|