首页 | 本学科首页   官方微博 | 高级检索  
     


Estimating the covariance matrix: a new approach
Authors:T. Kubokawa  M.S. Srivastava
Affiliation:a Faculty of Economics, University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
b Department of Statistics, University of Toronto, 100 St. George Street, Toronto, Ont., Canada M5S 3G3
Abstract:
In this paper, we consider the problem of estimating the covariance matrix and the generalized variance when the observations follow a nonsingular multivariate normal distribution with unknown mean. A new method is presented to obtain a truncated estimator that utilizes the information available in the sample mean matrix and dominates the James-Stein minimax estimator. Several scale equivariant minimax estimators are also given. This method is then applied to obtain new truncated and improved estimators of the generalized variance; it also provides a new proof to the results of Shorrock and Zidek (Ann. Statist. 4 (1976) 629) and Sinha (J. Multivariate Anal. 6 (1976) 617).
Keywords:primary 62F11   62J12   secondary 62C15   62C20
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号