首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Design and synthesis of a new polymer-supported Evans-type oxazolidinone: an efficient chiral auxiliary in the solid-phase asymmetric alkylation reactions
Authors:Tomoya Kotake  S Rajesh
Institution:Department of Medicinal Chemistry, Center for Frontier Research in Medicinal Science, 21st Century COE Program, Kyoto Pharmaceutical University, Yamashina-ku, Kyoto 607-8412, Japan
Abstract:Wang resin-supported Evans' chiral auxiliary (23) was designed based on a novel polymer-anchoring strategy, which utilizes the 5-position of the oxazolidinone ring, and its new synthetic route applicable to multi-gram preparation in just a day was developed. Solid-phase Evans' asymmetric alkylation on 23-derived N-acylimide resin and following lithium hydroperoxide-mediated chemoselective hydrolysis afforded the corresponding α-branched carboxylic acids in desired high stereoselectivities (up to 97% ee) and moderate to good overall yield (up to 70%, for 3 steps), which were comparable to those of the conventional solution-phase methods. Furthermore, recovery and recycling of the polymer-supported chiral auxiliary were successfully achieved without decreasing the stereoselectivity of the product. Therefore, this is the first successful example that the solid-phase Evans' asymmetric enolate-alkylation was efficiently performed on the solid-support, and it is concluded that the connection to the solid-support via the 5-position of the oxazolidinone ring is an ideal strategy in the solid-phase Evans' chiral auxiliary.
Keywords:Evans' oxazolidinone  Polymer-supported chiral auxiliary  Asymmetric synthesis  Solid-phase organic synthesis  Solid-phase asymmetric alkylation  Recovery and recycling
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号