首页 | 本学科首页   官方微博 | 高级检索  
     


UV photolysis products of propiolic acid in noble-gas solids
Authors:Isoniemi Esa  Khriachtchev Leonid  Makkonen Maarit  Räsänen Markku
Affiliation:Laboratory of Physical Chemistry, P.O. Box 5, University of Helsinki, Helsinki FIN-00014, Finland.
Abstract:
Photolysis (193 nm) of propiolic acid (HCCCOOH) was studied with Fourier transform infrared spectroscopy in noble-gas (Ar, Kr, and Xe) solid matrixes. The photolysis products were assigned using ab initio quantum chemistry calculations. The novel higher-energy conformer of propiolic acid was efficiently formed upon UV irradiation, and it decayed back to the ground-state conformer on a time scale of approximately 10 min by tunneling of the hydrogen atom through the torsional energy barrier. In addition, the photolysis produced a number of matrix-isolated 1:1 molecular complexes such as HCCH...CO2, HCCOH...CO, and H2O...C3O. The HCCH...CO2 complex dominated among the photolysis products, and the computations suggested a parallel geometry of this complex characterized by an interaction energy of -9.6 kJ/mol. The HCCOH...CO complex also formed efficiently, but its concentration was strongly limited by its light-induced decomposition. In this complex, the most probable geometry was found to feature the interaction of carbon monoxide with the OH group via the carbon atom, and the computational interaction energy was determined to be -18.3 kJ/mol. The formation of the strong H2O...C3O complex (interaction energy -21 kJ/mol) was less efficient, which might be due to the inefficiency of the involved radical reaction.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号