Abstract: | Optical bistable behavior in a unidirectional ring cavity (or a Fabry–Pérot cavity) containing a semiconductor quantum well, described as a three-level ladder-type system with similar transition energies, has been studied. The system interacts with a strong driving field which is in two-photon resonance with the intersubband transition and thus simultaneously drives all three levels into phase-locked quantum coherence. The threshold for switching to upper branch of the bistable curve is found to be reduced due to the presence of quantum interference. Such system can be used for making efficient and fast all-optical switching devices. PACS 78.67.De; 42.50.Hz; 78.20.Bh |