首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Chain dynamics and thermal stability of boron-tris-containing copolymers
Authors:CC Shih  GP Wang  TC Chang
Institution:a Department of Applied Chemistry, Chung Cheng Institute of Technology, NDU, Tahsi, Taoyuan 33509, Taiwan, ROC
b Chemical Systems Research Division, Chung Shan Institute of Science and Technology, Lungtan, Taoyuan 32544, Taiwan, ROC
Abstract:Poly(methyl methacrylate-co-glycidyl methacrylate-tris(hydroxymethyl)aminomethane) (PMGT) copolymers were obtained by copolymerization of methyl methacrylate (MMA) and a chelating monomer, glycidyl methacrylate-tris(hydroxymethyl)aminomethane (GMA-Tris), with potassium persulfate as an initiator. The glass transition temperature (Tg) and the proton spin-lattice relaxation time in the rotating frame (View the MathML source) substantiated the formation of random copolymers. Borate-loaded PMGT (BPMGT) complexes were prepared by mixing PMGT and boric acid solution. The formation of coordination bond between PMGT and borate was studied using differential scanning calorimetry, infrared and 13C solid-state nuclear magnetic resonance spectroscopy. A single composition dependent Tg was obtained for the PMGT copolymers. The Tg value of BPMGT complex was much higher than that of PMGT copolymer with the same composition. The View the MathML source of the main chains in the PMGT copolymers and BPMGT complexes had one value, and that in the complexes was higher than that in the copolymers. The apparent activation energy (Ea) of the thermo-oxidative degradation of Tris units in complexes was larger than that in copolymers, whereas the Ea value of the MMA-GMA matrix was reversed.
Keywords:Tris  NMR  Complex  Relaxation  Activation energy
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号