首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Chemical and mechanical stability of EPDM in a PEM fuel cell environment
Authors:Jinzhu Tan  YJ Chao  Haifeng Wang  Jianming Gong  JW Van Zee
Institution:aCollege of Mechanical and Power Engineering, Nanjing University of Technology, Nanjing, Jiangsu 210009, China;bCollege of Engineering and Computing, University of South Carolina, Columbia, SC 29208, USA
Abstract:Proton exchange membrane (PEM) fuel cell stack requires elastomeric gaskets in each cell to keep the reactant gases within their respective regions. Long-term durability of the fuel cell stacks depends heavily on the functionality of the elastomeric gasket material. Chemical and mechanical stability of the elastomeric material is of great concern to the overall performance of the fuel cell stacks. The degradation of a commercially available gasket material, ethylene-propylene-diene monomer (EPDM), was investigated in a simulated PEM fuel cell environment in this work. One solution and two temperatures, based on actual fuel cell operation, were used in this study. Optical microscopy was used to show the topographical changes on the sample surface. Attenuated total reflection Fourier transform infrared (ATR-FTIR) spectroscopy was employed to study the surface chemistry of the gasket material before and after exposure to the simulated PEM fuel cell environment over time. Atomic absorption spectrometry was used to identify the leachants in the soaking solution from the elastomeric material. Microindentation test and dynamic mechanical analysis (DMA) were conducted to assess the change of mechanical properties of the samples exposed to the environment. The atomic absorption spectrometer analysis shows that silicon and calcium were leached from the material into the soaking solution. The ATR-FTIR results indicate that the chemical changes were not apparent. The microindentation test and DMA results reveal that mechanical properties were not changed significantly.
Keywords:PEM fuel cell  EPDM  Stability  ATR-FTIR  Microindentation
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号