首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Thermodynamic and kinetic stabilities of complementary double helices utilizing amidinium-carboxylate salt bridges
Authors:Yamada Hidekazu  Wu Zong-Quan  Furusho Yoshio  Yashima Eiji
Institution:Department of Molecular Design and Engineering, Graduate School of Engineering, Nagoya University, Chikusa-ku, Japan.
Abstract:A series of dimer strands consisting of m-terphenyl backbones bearing complementary chiral or achiral amidines and achiral carboxylic acid residues connected by various types of linkers, such as diacetylene, Pt(II)-acetylide, and p-diethynylbenzene linkages, were synthesized by a modular strategy, and their chiroptical properties on the complementary double helix formations were investigated by absorption, circular dichroism (CD), and (1)H NMR spectroscopies. The thermodynamic and kinetic stabilities of the complementary double helices assisted by amidinium-carboxylate salt bridges are highly dependent on their linkages, and the thermodynamic analyses of the dimer duplexes revealed that the association constants increased in the order: Pt(II)-acetylide linker < p-diethynylbenzene linker < diacetylene linker, which is in agreement with the reverse order of their bulkiness. The substituents on the amidine groups were also found to affect the stabilities on the duplexes and the association constants increased in the order: isopropyl < (R)-1-phenylethyl < cyclohexyl. In addition, the introduction of electron-donating and/or electron-withdrawing substituents at the phenyl groups of the p-diethynylbenzene linkers connecting the amidine and carboxylic acid units, respectively, tends to stabilize the complementary double helices, especially in polar solvents, such as DMSO, due to the attractive charge-transfer interactions between the aromatic linkers, although the salt bridge formation is hampered in DMSO. Furthermore, the kinetic analyses of the chain exchange reactions for the duplexes bearing diacetylene and p-diethynylbenzene linkages showed that these were slow processes with negative ΔS(symbol: see text]) values, meaning that the chain exchange reactions proceed via direct exchange pathways. In contrast, those for the duplexes bearing Pt(II)-acetylide linkages were fast processes supported by positive ΔS(symbol: see text]) values, suggesting that the chain exchange reactions proceed via dissociation-exchange ones. The helix-inversion kinetics investigated for the racemic dimer duplexes composed of achiral amidines based on variable-temperature (1)H NMR measurements indicated that the barriers for the helix-inversion increased in the order: Pt(II)-acetylide linker, p-diethynylbenzene linker < diacetylene linker.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号