首页 | 本学科首页   官方微博 | 高级检索  
     检索      


13C/14N heteronuclear multiple-quantum correlation with rotary resonance and REDOR dipolar recoupling
Authors:Gan Zhehong
Institution:Center of Interdisciplinary Magnetic Resonance, National High Magnetic Field Laboratory, Tallahassee, FL 32310, USA.
Abstract:A two-dimensional (13)C/(14)N heteronuclear multiple quantum correlation (HMQC) experiment using dipolar recoupling under magic-angle spinning (MAS) is described. The experiment is an extension of the recent indirect (13)C detection scheme for measuring (14)N quadrupolar coupling under MAS. The recoupling allows the direct use of the much larger dipolar interaction instead of the small J and residual dipolar couplings for establishing (13)C/(14)N correlations. Two recoupling methods are incorporated into the HMQC sequence, both applying rf only to the observed (13)C spin. The first one uses the REDOR sequence with two pi-pulses per rotor cycle. The second one uses a cw rf field matching the spinning frequency, known as rotary resonance. The effects of CSA, T(2)(') signal loss, MAS frequency and stability and t(1)-noise are compared and discussed.
Keywords:
本文献已被 ScienceDirect PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号