Accurate numerical estimation of interphase momentum transfer in Lagrangian–Eulerian simulations of dispersed two-phase flows |
| |
Authors: | R. Garg C. Narayanan D. Lakehal S. Subramaniam |
| |
Affiliation: | aDepartment of Mechanical Engineering, H.M. Black Engineering, Iowa State University, Ames, IA 50011, USA bInstitute of Energy Technology, Swiss Federal Institute of Technology, CH-8092 Zurich, Switzerland |
| |
Abstract: | The Lagrangian–Eulerian (LE) approach is used in many computational methods to simulate two-way coupled dispersed two-phase flows. These include averaged equation solvers, as well as direct numerical simulations (DNS) and large-eddy simulations (LES) that approximate the dispersed-phase particles (or droplets or bubbles) as point sources. Accurate calculation of the interphase momentum transfer term in LE simulations is crucial for predicting qualitatively correct physical behavior, as well as for quantitative comparison with experiments. Numerical error in the interphase momentum transfer calculation arises from both forward interpolation/approximation of fluid velocity at grid nodes to particle locations, and from backward estimation of the interphase momentum transfer term at particle locations to grid nodes. A novel test that admits an analytical form for the interphase momentum transfer term is devised to test the accuracy of the following numerical schemes: (1) fourth-order Lagrange Polynomial Interpolation (LPI-4), (3) Piecewise Cubic Approximation (PCA), (3) second-order Lagrange Polynomial Interpolation (LPI-2) which is basically linear interpolation, and (4) a Two-Stage Estimation algorithm (TSE). A number of tests are performed to systematically characterize the effects of varying the particle velocity variance, the distribution of particle positions, and fluid velocity field spectrum on estimation of the mean interphase momentum transfer term. Numerical error resulting from backward estimation is decomposed into statistical and deterministic (bias and discretization) components, and their convergence with number of particles and grid resolution is characterized. It is found that when the interphase momentum transfer is computed using values for these numerical parameters typically encountered in the literature, it can incur errors as high as 80% for the LPI-4 scheme, whereas TSE incurs a maximum error of 20%. The tests reveal that using multiple independent simulations and higher number of particles per cell are required for accurate estimation using current algorithms. The study motivates further testing of LE numerical methods, and the development of better algorithms for computing interphase transfer terms. |
| |
Keywords: | Lagrangian–Eulerian Numerical simulation Two-way coupling Numerical error Statistical error Particle method |
本文献已被 ScienceDirect 等数据库收录! |
|