首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Numerical characterization of micro heat exchangers using experimentally tested porous aluminum layers
Authors:BV Antohe  JL Lage  DC Price  RM Weber
Institution:Mechanical Engineering Department, Southern Methodist University, Dallas, Texas, USA;Defense Systems &; Electronics Group, Texas Instruments, Plano, Texas, USA
Abstract:A microporous heat exchanger device is being developed for cooling high-power electronics. The device uses a mechanically compressed aluminum porous layer to improve the heat transfer at the coolant/solid interface and to provide more uniform cooling of the electronics. The hydraulic characteristics (porosity, permeability, and Forchheimer coefficient) of nine distinct compressed layers are obtained experimentally. These layers have porosity from 0.3 to 0.7 and permeability from 1.8 × 10−10 m2 to 1.2 × 10−9 m2. The inertia coefficient varies from 0.3 to 0.9. These hydraulic characteristics are used in the numerical simulations of a real microporous heat exchanger for cooling phased-array radars in development. Thermal and hydraulic performances are illustrated in terms of total pressure drop across the heat exchanger, maximum temperature difference in the direction transverse to the electronic modules, and maximum temperature within the coolant passage. Results indicate that the proposed design is capable of achieving a maximum transverse temperature difference of 2°C using polyalphaolephin as coolant.
Keywords:cooling of electronics  microporous heat exchangers  porous media
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号