首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Effects of oxygen partial pressure on resistive switching characteristics of ZnO thin films by DC reactive magnetron sputtering
Authors:Zhenguo Ji  Qinan Mao  Weiqing Ke
Institution:1. Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Hubei Key Laboratory of Ferroelectric and Dielectric Materials and Devices, Faculty of Physics and Electronic Science, Hubei University, Wuhan 430062, China;2. School of Physics and Materials Science, Radiation Detection Materials & Device Lab, Anhui University, Hefei 230039, China;3. Department of Electrical Engineering, City University of Hong Kong, Hong Kong Special Administrative Region, China
Abstract:Cu/ZnO/n+-Si structures were prepared by magnetron sputtering of a layer of ZnO thin film onto heavily doped silicon substrate, followed by thermal evaporation of a thin layer of metallic Cu. The resistive switching characteristics of Cu/ZnO/n+-Si structures were investigated as a function of oxygen partial pressure during ZnO deposition. Reproducible resistive switching characteristics were observed in ZnO thin films deposited at 20%, 33% and 50% oxygen partial pressure ratios while ZnO thin film deposited at 10% oxygen partial pressure ratio did not show resistive switching behavior. The conduction mechanisms in high and low resistance states are dominated by space-charge-limited conduction and ohmic behavior respectively, which suggests that resistive switching behaviors in such structures are related to filament formation and rupture. It is also found that the reset current decreases as oxygen partial pressure increases, due to the variation of oxygen vacancy concentration in the ZnO thin films.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号