首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Size-dependent energy scales in the ideal fermi gas
Authors:V Subrahmanyam  M Barma
Institution:Tata Institute of Fundamental Research , Homi Bhabha Road, Bombay, 400 005, India
Abstract:Abstract

The simplest model for the electronic properties of small metal particles is an ideal Fermi gas confined to a finite volume. When the confining region of size L has a regular shape such as a sphere or a cube, there are two distinct scales of energy which characterize the spectrum of eigenvalues near the Fermi energy EF ≡ ?2 k 2 f/2m. The inner scale δ ~ EF /(kFL)2 is the mean spacing between successive energy levels, while the outer energy scale Δ ~ EF /(kFL) describes clustering of several levels, or shell structure. Consequences for the behaviour of thermodynamic properties are investigated. There are three regimes of temperature T: normal metallic (T > Δ), shell-metallic (δ < T < Δ) and semiconductor-like (T < δ). Finally, if the shape of a hard-walled container is allowed to vary so as to minimize the energy, it is argued that the optimal shape fluctuates between spherical and distorted as L is changed.
Keywords:Fermi gas  finite size effects  energy scales  shell structure  small metal particles
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号