首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Strong correlations and Fickian water diffusion in narrow carbon nanotubes
Authors:Mukherjee Biswaroop  Maiti Prabal K  Dasgupta Chandan  Sood A K
Institution:Centre for Condensed Matter Theory, Department of Physics, Indian Institute of Science, Bangalore, India. biswa@physics.iisc.ernet.in
Abstract:The authors have used atomistic molecular dynamics (MD) simulations to study the structure and dynamics of water molecules inside an open ended carbon nanotube placed in a bath of water molecules. The size of the nanotube allows only a single file of water molecules inside the nanotube. The water molecules inside the nanotube show solidlike ordering at room temperature, which they quantify by calculating the pair correlation function. It is shown that even for the longest observation times, the mode of diffusion of the water molecules inside the nanotube is Fickian and not subdiffusive. They also propose a one-dimensional random walk model for the diffusion of the water molecules inside the nanotube. They find good agreement between the mean-square displacements calculated from the random walk model and from MD simulations, thereby confirming that the water molecules undergo normal mode diffusion inside the nanotube. They attribute this behavior to strong positional correlations that cause all the water molecules inside the nanotube to move collectively as a single object. The average residence time of the water molecules inside the nanotube is shown to scale quadratically with the nanotube length.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号