首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Accurate determination of the structure of cyclooctatetraene by femtosecond rotational coherence spectroscopy and ab initio calculations
Authors:Kummli Dominique S  Lobsiger Simon  Frey Hans-Martin  Leutwyler Samuel  Stanton John F
Institution:Departement für Chemie and Biochemie, Universit?t Bern, Freiestrasse 3, CH-3000 Bern 9, Switzerland.
Abstract:We combine femtosecond time-resolved rotational coherence spectroscopy with high-level ab initio theory to obtain accurate structural information for the nonpolar antiaromatic molecule 1,3,5,7-cyclooctatetraene (C8H8, COT) and its perdeuterated isotopomer COT-d8 (C8D8). We measure the rotational B0 and centrifugal distortion constants D(J), D(JK) of the v = 0 states of COT and COT-d8 to high accuracy, e.g. B0 (COT) = 2710.329(56) MHz, as well as B(v) for the v = 1 states nu6, nu11, nu17, nu22, and nu41/nu42 of COT. The experimental rotational constants are compared to those obtained from calculations at the coupled-cluster with single, double, and perturbative triples CCSD(T)] level. The latter also take into account vibrational averaging effects of the ground and vibrationally excited states. Combining the experimental and calculated rotational constants with the calculated equilibrium bond lengths and angles allows us to determine accurate equilibrium structure parameters, e.g., r(e) (C-C) = 147.0 +/- 0.05 pm, r(e) (C=C) = 133.7 +/- 0.1 pm, and r(e) (C-H) = 107.9 +/- 0.1 pm. The equilibrium C-C and C=C bond lengths of COT are compared to those of 1,3-butadiene. The expected effect of decreased pi-electron delocalization due to the twisting of adjacent C=C double bonds in COT relative to butadiene is observed for the C-C bonds but not for the C=C bonds.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号