首页 | 本学科首页   官方微博 | 高级检索  
     


Computational study of the oxidation and decomposition of dibenzofuran under atmospheric conditions
Authors:Altarawneh Mohammednoor  Kennedy Eric M  Dlugogorski Bogdan Z  Mackie John C
Affiliation:Process Safety and Environment Protection Research Group, School of Engineering, The University of Newcastle, Callaghan, NSW 2308, Australia.
Abstract:The atmospheric degradation of dibenzofuran (DF) initiated by OH addition has been studied by using density functional theory (B3LYP method). Site C1 in DF is predicted to be the favored site for OH addition, with a branching ratio of 0.61 to produce a DF-OH(1) adduct. The calculated reaction rate constant for OH addition to DF has been used to predict the atmospheric lifetime of DF to be 0.45 day. Three different modes of attack of O2 ((3)Sigma(g)) on DF-OH(1) have been examined. Abstraction of hydrogen gem to OH in DF-OH(1) by O2 ((3)Sigma(g)) (producing 1-dibenzofuranol I) and dioxygen addition in the three radical sites in cis and trans orientation (relative to the ispo-added OH) of the pi-delocalized electron system of DF-OH(1) are feasible under atmospheric conditions. The free energy of activation (at 298.15 K) for the formation of 1-dibenzofuranol is 15.1 kcal/mol with a free energy change of -36.3 kcal/mol, while the formation of DF-OH(1)-O2 adducts are endergonic by 9.2-21.8 kcal/mol with a 16.3-23.6 kcal/mol free energy of activation. On the basis of the calculated reaction rate constants, the formation of 1-dibenzofuranol is more important than the formation of DF-OH-O2 adducts. The results presented here are a first attempt to gain a better understanding of the atmospheric oxidation of dioxin-like compounds on a precise molecular basis.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号