Abstract: | We show that by scanning the frequency of a single mode infrared (IR) optical parametric oscillator (IR-OPO) laser to excite the molecular species of interest and fixing the frequency of a vacuum ultraviolet (VUV) laser to photoionize the IR excited species, high-resolution IR spectra of polyatomic neutrals can be obtained with high sensitivity. The fact that this IR-VUV-photoion (IR-VUV-PI) method is based on VUV photoionization probe, and thus, allows the identification of the neutral IR absorber, makes it applicable for IR spectroscopy measurements of isotopemers, radicals, and clusters, which usually exist as impure samples. The highly resolved IR-VUV-PI measurements achieved using the single mode IR-OPO laser have made possible the selection of single rovibrational states of CH3X (X=Br and I), C2H4, and C3H4 for VUV-pulsed field ionization-photoelectron (VUV-PFI-PE) measurements, resulting in rovibrationally resolved photoelectron spectra for these polyatomic molecules. These experiments show that the signal-to-noise ratios of the IR-VUV-PI and IR-VUV-PFI-PE spectra obtained by employing the high-resolution IR-OPO laser are significantly higher than those observed in previous IR-VUV-PI and IR-VUV-PFI-PE studies using a low-resolution IR-OPO laser. Further improvement in sensitivity of IR-VUV-PI and IR-VUV-PFI-PE measurements by using the collinear arrangement of IR-VUV lasers and molecular beam is discussed. |