首页 | 本学科首页   官方微博 | 高级检索  
     

加权马尔可夫链在传染病发病情况预测分析中的应用
引用本文:彭志行,鲍昌俊,赵杨,夏乐天,于浩,陈峰. 加权马尔可夫链在传染病发病情况预测分析中的应用[J]. 数学的实践与认识, 2009, 39(23)
作者姓名:彭志行  鲍昌俊  赵杨  夏乐天  于浩  陈峰
作者单位:1. 南京医科大学流行病与卫生统计系,江苏,南京,210029
2. 江苏省疾病预防控制中心,江苏,南京,210009
3. 河海大学应用数学系,江苏,南京,210098
基金项目:国家科技重大专项课题,江苏省高校自然科学基金课题 
摘    要:首先基于传染病的发病情况存在大量不确定性的特点,应用有序聚类的方法建立发病人数状态的分级标准;然后针对发病人数序列为相依随机变量的特点,采取以规范化的各阶自相关系数为权重,用加权的马尔可夫链模型来预测和分析发病人数的变化状况,使预测结论的长期效果趋于最优;最后通过实例检验,对预测结果和方法进行评价和深入的分析.

关 键 词:加权马尔可夫链  有序聚类  传染病  预测

The Application of Weighted Markov Chain on Forecasting in Incidence of Infectious Disease
PENG Zhi-hang,BAO Chang-jun,ZHAO Yang,XIA Le-tian,YU Hao,CHEN Feng. The Application of Weighted Markov Chain on Forecasting in Incidence of Infectious Disease[J]. Mathematics in Practice and Theory, 2009, 39(23)
Authors:PENG Zhi-hang  BAO Chang-jun  ZHAO Yang  XIA Le-tian  YU Hao  CHEN Feng
Abstract:This paper firstly applied sequential cluster method to set up the classification standard of infectious disease incidence state based on the fact that there are much uncertainty characteristics in the incidence course; then this paper presented a method which is called the weighted Markov chain to predicted the future incidence state by regarding the standardized self-coeffiicients as weights based on the special characteristics of infectious disease incidence being a dependent stochastic variable, and maked the long-term benefit of decision optimal, Finally, testing goodness-of-fit is given to vestify the practicability and reliability of the model and its result by examples.
Keywords:weighted Markov chain  sequential cluster  infectious disease  forecasting
本文献已被 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号