首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Photophysical and computational investigations of bis(phosphine) organoplatinum(II) metallacycles
Authors:Pollock J Bryant  Cook Timothy R  Stang Peter J
Institution:Department of Chemistry, University of Utah, 315 South 1400 East, Salt Lake City, Utah 84112, USA.
Abstract:A series of endohedral and exohedral amine-functionalized ligands were synthesized and used in the construction of supramolecular D(2h) rhomboids and a D(6h) hexagon. These supramolecular polygons were obtained via self-assembly of 120° dipyridyl donors with 180° or 120° diplatinum precursors when combined in 1:1 ratios. Steady-state absorption and emission spectra were collected for each ligand and metallacycle. Density functional theory (DFT) and time-dependent DFT calculations were employed to probe the nature of the observed optical transitions for the rhomboids. The emissive properties of these bis(phosphine) organoplatinum metallacycles arise from ligand-centered transitions involving π-type molecular orbitals with modest contributions from metal-based atomic orbitals. The D(2h) rhomboid self-assembled from 2,6-bis(4-pyridylethynyl)aniline and a 60° organoplatinum(II) acceptor has a low-energy excited state in the visible region and emits above 500 nm, properties which greatly differ from those of the parent 2,6-bis(4-pyridylethynyl)aniline ligand.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号