首页 | 本学科首页   官方微博 | 高级检索  
     


Structure and properties of regenerated cellulose/tourmaline nanocrystal composite films
Authors:Dong Ruan  Lina Zhang  Zhenjun Zhang  Xinming Xia
Abstract:Nanocomposite films were successfully prepared from cellulose and tourmaline nanocrystals with mean diameters of 70 nm in a 1.5 M NaOH/0.65 M thiourea aqueous solution by coagulation with 5 wt % CaCl2 and then a 3 wt % HCl aqueous solution for 2 min. The structure and properties of the composite films were characterized by X‐ray diffraction, scanning electron microscopy, transmission electron microscopy, dynamic mechanical analysis (DMA), differential scanning calorimetry (DSC), and tensile testing. The results indicated that the tourmaline nanocrystals were dispersed in a cellulose matrix, maintaining the original structure of the nanocrystals in the composite films. The loss peaks (tan δ) in the DMA spectra and the decomposition temperatures in the DSC curves of the composite films were significantly shifted toward low temperatures, suggesting that the nanocrystals broke the partial intermolecular hydrogen bonds of cellulose, and this led to a reduction in the thermal stability. However, the nanocomposite films exhibited a homogeneous structure and dispersion of the nanocrystals. When the tourmaline content was in the range of 4–8 wt %, the composite films possessed good tensile strength (92–107 MPa) and exhibited obvious antibacterial action against Staphylococcus aureus. This work provides a potential way of preparing functional composite films or fibers from cellulose and nanoinorganic particles with NaOH/thiourea aqueous solutions. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 367–373, 2004
Keywords:NaOH/thiourea aqueous solutions  regenerated cellulose  composites  tourmaline nanocrystals  biological application of polymers
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号