Abstract: | ![]() Hydroxyethyl chitosan and hydroxypropyl chitosan were prepared through the reaction of alkali‐chitosan with 2‐chloroethanol and propylene epoxide, respectively. Fourier transform infrared and 13C NMR measurements were made to examine the substitution on the chitosan unit. According to a comparison of the peak areas between the modified chitosan and unmodified chitosan and the integration of peak areas of 1H NMR spectra, for both modified chitosans, the maximum degree of substitution was less than 25%. The ionic conductivity and mechanical properties of modified chitosan membranes were investigated. In comparison with the unmodified chitosan membrane, hydrated hydroxyethyl and hydroxypropyl chitosan membranes with a higher degree of substitution showed an increase in ionic conductivity of about one order of magnitude; moreover, the crystallinity of hydroxyethyl and hydroxypropyl chitosan membranes was remarkably reduced, and their swelling indices increased significantly. However, these modified membranes did not exhibit significant changes in their tensile strength and breaking elongation. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 1379–1397, 2004 |