首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Functionalization of nylon membranes via surface-initiated atom-transfer radical polymerization
Authors:Xu F J  Zhao J P  Kang E T  Neoh K G  Li J
Institution:Department of Chemical and Biomolecular Engineering, National University of Singapore, Kent Ridge, Singapore 119260.
Abstract:The ability to manipulate and control the surface properties of nylons is of crucial importance to their widespread applications. In this work, surface-initiated atom-transfer radical polymerization (ATRP) is employed to tailor the functionality of the nylon membrane and pore surfaces in a well-controlled manner. A simple two-step method, involving the activation of surface amide groups with formaldehyde and the reaction of the resulting N-methylol polyamide with 2-bromoisobutyryl bromide, was first developed for the covalent immobilization of ATRP initiators on the nylon membrane and its pore surfaces. Functional polymer brushes of 2-hydroxyethyl methacrylate (HEMA) and poly(ethylene glycol)monomethacrylate (PEGMA) were prepared via surface-initiated ATRP from the nylon membranes. A kinetics study revealed that the chain growth from the membranes was consistent with a "controlled" process. The dormant chain ends of the grafted HEMA polymer (P(HEMA)) and PEGMA polymer (P(PEGMA)) on the nylon membranes could be reactivated for the consecutive surface-initiated ATRP to produce the corresponding nylon membranes functionalized by P(HEMA)-b-P(PEGMA) and P(PEGMA)-b-P(HEMA) diblock copolymer brushes. In addition, membranes with grafted P(HEMA) and P(PEGMA) brushes exhibited good resistance to protein adsorption and fouling under continuous-flow conditions.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号