首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Cholesterol modulates amiodarone-membrane interactions in model and native membranes
Authors:Maria C Antunes-Madeira  Romeu A Videira  Vítor M C Madeira
Institution:(1) Centro de Neurociências e Biologia Celular, Departamento de Zoologia, Universidade de Coimbra, 3004-517 Coimbra, Portugal;(2) Departamento de Ambiente, Escola Superior de Tecnologia, Instituto Superior Politécnico de Viseu, 3500 Viseu, Portugal
Abstract:The effects of cholesterol, a lipid mostly found in the sarcolemmal membranes, on the interaction of amiodarone with synthetic models of dimyristoylphosphatidylcholine (DMPC) and with native models of mitochondria and brain microsomes was studied. Alterations on the structural order of lipids were assessed by fluorescence polarization of 1,6-diphenyl-1,3,5-hexatriene (DPH) probing the bilayer core, and of the propionic acid derivative 3-(p-(6-phenyl)-1,3,5-hexatrienyl)phenylpropionic acid (DPH-PA) probing the outer regions of the bilayer. As detected by the probes and according to classic observations, cholesterol progressively increased the molecular order in the fluid phase of DMPC. Additionally, it modulated the type and extension of amiodarone effects. For low cholesterol concentrations (< or =10-15 mol%), amiodarone (50 microM) ordered DMPC bilayers and the effects were almost identical to those observed in pure DMPC. For higher cholesterol concentrations, amiodarone ordering effects decreased slightly and faded for cholesterol concentrations as high as 25 and 30 mol%, when detected by DPH-PA and DPH, respectively. Above these high cholesterol concentrations, a crossover from ordering to disordering effects of amiodarone was apparent, either in the upper region of the bilayer or the hydrophobic core. The effects of amiodarone in native membranes of mitochondria and brain microsomes, in which "native" cholesterol accounts for about 0 and 25 mol%, respectively, correlated reasonably with the results in models of synthetic lipids. There is a close relationship between cholesterol concentration and amiodarone effects, in either synthetic models or native model membranes. Therefore, it may be predicted that the lipid physicochemical properties regulated by cholesterol concentration will also modulate the effects of amiodarone in sarcolemma.
Keywords:Amiodarone  membrane cholesterol  lipid physicochemical properties  membrane phases  fluorescent probes
本文献已被 PubMed SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号