首页 | 本学科首页   官方微博 | 高级检索  
     

基于PSO优化LSSVM的未知模型混沌系统控制
引用本文:龙文,焦建军,龙祖强. 基于PSO优化LSSVM的未知模型混沌系统控制[J]. 物理学报, 2011, 60(11): 110506-110506. DOI: 10.7498/aps.60.110506
作者姓名:龙文  焦建军  龙祖强
作者单位:1. 贵州财经学院,贵州省经济系统仿真重点实验室,贵阳 550004;2. 衡阳师范学院物理与电子信息科学系,衡阳 421008
基金项目:国家自然科学基金(批准号:61074069,10961008)资助的课题.
摘    要:
由于混沌系统存在非线性、不确定性等特点, 常规的控制方法难以获得满意的结果. 提出一种基于PSO优化LSSVM模型参数的混沌系统控制方法. 该方法利用PSO算法的收敛速度快和全局收敛能力, 优化LSSVM模型的惩罚因子和核函数参数, 避免了人为选择参数的盲目性, 提高了LSSVM模型的预测精度. 另外, 该方法不需要被控混沌系统的解析模型, 且当测量噪声存在情况下控制仍然有效. 仿真实验结果表明了该方法的有效性和可行性.关键词:混沌系统控制粒子群算法最小二乘支持向量机

关 键 词:混沌系统控制  粒子群算法  最小二乘支持向量机
收稿时间:2011-01-10

Control of chaos solely based on PSO-LSSVM without usiing an analytical model
Long Wen,Jiao Jian-Jun and Long Zu-Qiang. Control of chaos solely based on PSO-LSSVM without usiing an analytical model[J]. Acta Physica Sinica, 2011, 60(11): 110506-110506. DOI: 10.7498/aps.60.110506
Authors:Long Wen  Jiao Jian-Jun  Long Zu-Qiang
Affiliation:Guizhou Key Laboratory of Economics System Simulation, Guizhou College of Finance and Economics, Guiyang 550004, China;Guizhou Key Laboratory of Economics System Simulation, Guizhou College of Finance and Economics, Guiyang 550004, China;Department of Physics and Electronics Information Science, Hengyang Normal College, Hengyang 421008, China
Abstract:
For a chaotic system with nonlinear ity and uncertainty, it is difficult to obtain the satisfactory performance using general control methods. A least square support vector marchine (LSSVM) control method based on particle swarm optimigation(PSO), is proposed for chaos control. Optimizing two parameters of LSSVM model by PSO abilities of the fast convergence and whole optimization, thus aroiding the blindness of man-made choice, the LSSVM-PSO model can enhance the capability of forecasting. The proposed method does not need any analytic model, and it is still effective in the presence of measurement noises. Simulation results with a Logistic mapping and Henon attractor show the effectiveness and feasibility of this method.
Keywords:chaotic system control  particle swarm optimization  least squares support vector machine
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《物理学报》浏览原始摘要信息
点击此处可从《物理学报》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号