首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Crystal plasticity-based forming limit prediction for non-cubic metals: Application to Mg alloy AZ31B
Authors:C John Neil  Sean R Agnew
Institution:Department of Materials Science and Engineering, University of Virginia, 395 McCormick Road, Charlottesville, VA 22904, USA
Abstract:A viscoplastic crystal plasticity model is incorporated within the Marciniak–Kuczynski (M–K) approach for forming limit curve prediction. The approach allows for the incorporation of crystallographic texture-induced anisotropy and the evolution of the same. The effects of mechanical twinning on the plastic response and texture evolution are also incorporated. Grain-level constitutive parameters describing the temperature dependent behavior of hexagonal close packed Mg alloy, AZ31B, sheets at discrete temperatures are used as a first application of the model. A trade-off between significant strain hardening behavior at lower temperatures (∼150 °C), and significant strain rate hardening at higher temperatures (∼200 °C) lead to similarities in the predicted forming limits. The actual formability of this alloy depends strongly on temperature within this range, and this distinction with the current modeling is related to more localized instability-based failure mechanisms at the lower temperatures than is assumed in the M–K approach. It is shown that the strain path dependence in the strain hardening response is significant and that it influences the forming limits in a predictable way. For broader applicability, a means of incorporating dynamic recrystallization into the crystal plasticity model is required.
Keywords:Warm forming  Forming limit diagram  Magnesium  Texture  Strain rate sensitivity
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号