首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Fabrication of Stiffness Gradients of GelMA Hydrogels Using a 3D Printed Micromixer
Authors:Antonina Lavrentieva  Tabea Fleischhammer  Anton Enders  Hamidreza Pirmahboub  Janina Bahnemann  Iliyana Pepelanova
Abstract:Many properties in both healthy and pathological tissues are highly influenced by the mechanical properties of the extracellular matrix. Stiffness gradient hydrogels are frequently used for exploring these complex relationships in mechanobiology. In this study, the fabrication of a simple, cost‐efficient, and versatile system is reported for creation of stiffness gradients from photoactive hydrogels like gelatin‐methacryloyl (GelMA). The setup includes syringe pumps for gradient generation and a 3D printed microfluidic device for homogenous mixing of GelMA precursors with different crosslinker concentration. The stiffness gradient is investigated by using rheology. A co‐culture consisting of human adipose tissue‐derived mesenchymal stem cells (hAD‐MSCs) and human umbilical cord vein endothelial cells (HUVECs) is encapsulated in the gradient construct. It is possible to locate the stiffness ranges at which the studied cells displayed specific spreading morphology and migration rates. With the help of the described system, variable mechanical gradient constructs can be created and optimal 3D cell culture conditions can be experientially identified.
Keywords:3D cell cultures  3D printing  gelatin‐methacryloyl hydrogel  microfluidic mixers  stiffness gradients
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号